What is Video Compression? Video compression is a process of reducing the size of an image or video file by exploiting spatial and temporal redundancies within an image or video frame and across multiple video frames. The ultimate goal of a successful Video Compression system is to reduce data volume while retaining the perceptual quality of the decompressed data.
Papers and Code
Jun 18, 2025
Abstract:Implicit Neural representations (INRs) have emerged as a promising approach for video compression, and have achieved comparable performance to the state-of-the-art codecs such as H.266/VVC. However, existing INR-based methods struggle to effectively represent detail-intensive and fast-changing video content. This limitation mainly stems from the underutilization of internal network features and the absence of video-specific considerations in network design. To address these challenges, we propose a multi-scale feature fusion framework, MSNeRV, for neural video representation. In the encoding stage, we enhance temporal consistency by employing temporal windows, and divide the video into multiple Groups of Pictures (GoPs), where a GoP-level grid is used for background representation. Additionally, we design a multi-scale spatial decoder with a scale-adaptive loss function to integrate multi-resolution and multi-frequency information. To further improve feature extraction, we introduce a multi-scale feature block that fully leverages hidden features. We evaluate MSNeRV on HEVC ClassB and UVG datasets for video representation and compression. Experimental results demonstrate that our model exhibits superior representation capability among INR-based approaches and surpasses VTM-23.7 (Random Access) in dynamic scenarios in terms of compression efficiency.
Via

Jun 17, 2025
Abstract:This paper presents a general-purpose video super-resolution (VSR) method, dubbed VSR-HE, specifically designed to enhance the perceptual quality of compressed content. Targeting scenarios characterized by heavy compression, the method upscales low-resolution videos by a ratio of four, from 180p to 720p or from 270p to 1080p. VSR-HE adopts hierarchical encoding transformer blocks and has been sophisticatedly optimized to eliminate a wide range of compression artifacts commonly introduced by H.265/HEVC encoding across various quantization parameter (QP) levels. To ensure robustness and generalization, the model is trained and evaluated under diverse compression settings, allowing it to effectively restore fine-grained details and preserve visual fidelity. The proposed VSR-HE has been officially submitted to the ICME 2025 Grand Challenge on VSR for Video Conferencing (Team BVI-VSR), under both the Track 1 (General-Purpose Real-World Video Content) and Track 2 (Talking Head Videos).
Via

Jun 16, 2025
Abstract:Talking head video compression has advanced with neural rendering and keypoint-based methods, but challenges remain, especially at low bit rates, including handling large head movements, suboptimal lip synchronization, and distorted facial reconstructions. To address these problems, we propose a novel audio-visual driven video codec that integrates compact 3D motion features and audio signals. This approach robustly models significant head rotations and aligns lip movements with speech, improving both compression efficiency and reconstruction quality. Experiments on the CelebV-HQ dataset show that our method reduces bitrate by 22% compared to VVC and by 8.5% over state-of-the-art learning-based codec. Furthermore, it provides superior lip-sync accuracy and visual fidelity at comparable bitrates, highlighting its effectiveness in bandwidth-constrained scenarios.
* Accepted to ICMR2025
Via

Jun 16, 2025
Abstract:We propose an efficient framework to compress multiple video-frame features before feeding them into large multimodal models, thereby mitigating the severe token explosion arising from long or dense videos. Our design leverages a bidirectional state-space-based block equipped with a gated skip connection and a learnable weighted-average pooling mechanism applied to periodically inserted learned queries. This structure enables hierarchical downsampling across both spatial and temporal dimensions, preserving performance in a cost-effective manner. Across challenging long and dense video understanding tasks, our approach demonstrates competitive results against state-of-the-art models, while significantly reducing overall token budget. Notably, replacing our proposed state-space block with a conventional Transformer results in substantial performance degradation, highlighting the advantages of state-space modeling for effectively compressing multi-frame video data. Our framework emphasizes resource-conscious efficiency, making it practical for real-world deployments. We validate its scalability and generality across multiple benchmarks, achieving the dual objectives of efficient resource usage and comprehensive video understanding.
* 17 pages, 5 figures
Via

Jun 13, 2025
Abstract:State-of-the-art (SOTA) compressed video super-resolution (CVSR) models face persistent challenges, including prolonged inference time, complex training pipelines, and reliance on auxiliary information. As video frame rates continue to increase, the diminishing inter-frame differences further expose the limitations of traditional frame-to-frame information exploitation methods, which are inadequate for addressing current video super-resolution (VSR) demands. To overcome these challenges, we propose an efficient and scalable solution inspired by the structural and statistical similarities between hyperspectral images (HSI) and video data. Our approach introduces a compression-driven dimensionality reduction strategy that reduces computational complexity, accelerates inference, and enhances the extraction of temporal information across frames. The proposed modular architecture is designed for seamless integration with existing VSR frameworks, ensuring strong adaptability and transferability across diverse applications. Experimental results demonstrate that our method achieves performance on par with, or surpassing, the current SOTA models, while significantly reducing inference time. By addressing key bottlenecks in CVSR, our work offers a practical and efficient pathway for advancing VSR technology. Our code will be publicly available at https://github.com/handsomewzy/FCA2.
* This work has been submitted to the IEEE TMM for possible publication
Via

Jun 15, 2025
Abstract:Implicit Neural Representations (INRs) have attracted significant interest for their ability to model complex signals by mapping spatial and temporal coordinates to signal values. In the context of neural video representation, several decoding strategies have been explored to balance compactness and reconstruction quality, including pixel-wise, frame-wise, and patch-wise methods. Patch-wise decoding aims to combine the flexibility of pixel-based models with the efficiency of frame-based approaches. However, conventional uniform patch division often leads to discontinuities at patch boundaries, as independently reconstructed regions may fail to form a coherent global structure. To address this limitation, we propose a neural video representation method based on Structure-Preserving Patches (SPPs). Our approach rearranges each frame into a set of spatially structured patch frames using a PixelUnshuffle-like operation. This rearrangement maintains the spatial coherence of the original frame while enabling patch-level decoding. The network learns to predict these rearranged patch frames, which supports a global-to-local fitting strategy and mitigates degradation caused by upsampling. Experiments on standard video datasets show that the proposed method improves reconstruction quality and compression performance compared to existing INR-based video representation methods.
Via

Jun 12, 2025
Abstract:Beyond traditional hybrid-based video codec, generative video codec could achieve promising compression performance by evolving high-dimensional signals into compact feature representations for bitstream compactness at the encoder side and developing explicit motion fields as intermediate supervision for high-quality reconstruction at the decoder side. This paradigm has achieved significant success in face video compression. However, compared to facial videos, human body videos pose greater challenges due to their more complex and diverse motion patterns, i.e., when using explicit motion guidance for Generative Human Video Coding (GHVC), the reconstruction results could suffer severe distortions and inaccurate motion. As such, this paper highlights the limitations of explicit motion-based approaches for human body video compression and investigates the GHVC performance improvement with the aid of Implicit Motion Transformation, namely IMT. In particular, we propose to characterize complex human body signal into compact visual features and transform these features into implicit motion guidance for signal reconstruction. Experimental results demonstrate the effectiveness of the proposed IMT paradigm, which can facilitate GHVC to achieve high-efficiency compression and high-fidelity synthesis.
Via

Jun 11, 2025
Abstract:Gaussian and Laplacian entropy models are proved effective in learned point cloud attribute compression, as they assist in arithmetic coding of latents. However, we demonstrate through experiments that there is still unutilized information in entropy parameters estimated by neural networks in current methods, which can be used for more accurate probability estimation. Thus we introduce generalized Gaussian entropy model, which controls the tail shape through shape parameter to more accurately estimate the probability of latents. Meanwhile, to the best of our knowledge, existing methods use fixed likelihood intervals for each integer during arithmetic coding, which limits model performance. We propose Mean Error Discriminator (MED) to determine whether the entropy parameter estimation is accurate and then dynamically adjust likelihood intervals. Experiments show that our method significantly improves rate-distortion (RD) performance on three VAE-based models for point cloud attribute compression, and our method can be applied to other compression tasks, such as image and video compression.
Via

Jun 11, 2025
Abstract:Autoencoders empower state-of-the-art image and video generative models by compressing pixels into a latent space through visual tokenization. Although recent advances have alleviated the performance degradation of autoencoders under high compression ratios, addressing the training instability caused by GAN remains an open challenge. While improving spatial compression, we also aim to minimize the latent space dimensionality, enabling more efficient and compact representations. To tackle these challenges, we focus on improving the decoder's expressiveness. Concretely, we propose DGAE, which employs a diffusion model to guide the decoder in recovering informative signals that are not fully decoded from the latent representation. With this design, DGAE effectively mitigates the performance degradation under high spatial compression rates. At the same time, DGAE achieves state-of-the-art performance with a 2x smaller latent space. When integrated with Diffusion Models, DGAE demonstrates competitive performance on image generation for ImageNet-1K and shows that this compact latent representation facilitates faster convergence of the diffusion model.
Via

Jun 09, 2025
Abstract:The rise of deep generative models has greatly advanced video compression, reshaping the paradigm of face video coding through their powerful capability for semantic-aware representation and lifelike synthesis. Generative Face Video Coding (GFVC) stands at the forefront of this revolution, which could characterize complex facial dynamics into compact latent codes for bitstream compactness at the encoder side and leverages powerful deep generative models to reconstruct high-fidelity face signal from the compressed latent codes at the decoder side. As such, this well-designed GFVC paradigm could enable high-fidelity face video communication at ultra-low bitrate ranges, far surpassing the capabilities of the latest Versatile Video Coding (VVC) standard. To pioneer foundational research and accelerate the evolution of GFVC, this paper presents the first comprehensive survey of GFVC technologies, systematically bridging critical gaps between theoretical innovation and industrial standardization. In particular, we first review a broad range of existing GFVC methods with different feature representations and optimization strategies, and conduct a thorough benchmarking analysis. In addition, we construct a large-scale GFVC-compressed face video database with subjective Mean Opinion Scores (MOSs) based on human perception, aiming to identify the most appropriate quality metrics tailored to GFVC. Moreover, we summarize the GFVC standardization potentials with a unified high-level syntax and develop a low-complexity GFVC system which are both expected to push forward future practical deployments and applications. Finally, we envision the potential of GFVC in industrial applications and deliberate on the current challenges and future opportunities.
Via
